Physics – Condensed Matter – Superconductivity
Scientific paper
2012-03-30
Physics
Condensed Matter
Superconductivity
8 pages, 7 figures
Scientific paper
We investigate heat and charge transport through a diffusive SIF1F2N tunnel junction, where N (S) is a normal (superconducting) electrode, I is an insulator layer and F1,2 are two ferromagnets with arbitrary direction of magnetization. The flow of an electric current in such structures at subgap bias is accompanied by a heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We demonstrate that the refrigeration efficiency depends on the strength of the ferromagnetic exchange field h and the angle {\alpha} between the magnetizations of the two F layers. As expected, for values of h much larger than the superconducting order parameter \Delta, the proximity effect is suppressed and the efficiency of refrigeration increases with respect to a NIS junction. However, for h \sim \Delta the cooling power (i.e. the heat flow out of the normal metal reservoir) has a non-monotonic behavior as a function of h showing a minimum at h \approx \Delta. We also determine the dependence of the cooling power on the lengths of the ferromagnetic layers, the bias voltage, the temperature, the transmission of the tunneling barrier and the magnetization misalignment angle {\alpha}.
Bergeret Sebastián F.
Hekking Frank W. J.
Ozaeta A.
Vasenko Andrey S.
No associations
LandOfFree
Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-64099