Effective Random Matrix Theory description of chaotic Andreev billiards

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 4 figures

Scientific paper

10.1103/PhysRevB.70.052512

An effective random matrix theory description is developed for the universal gap fluctuations and the ensemble averaged density of states of chaotic Andreev billiards for finite Ehrenfest time. It yields a very good agreement with the numerical calculation for Sinai-Andreev billiards. A systematic linear decrease of the mean field gap with increasing Ehrenfest time $\tau_E$ is observed but its derivative with respect to $\tau_E$ is in between two competing theoretical predictions and close to that of the recent numerical calculations for Andreev map. The exponential tail of the density of states is interpreted semi-classically.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Effective Random Matrix Theory description of chaotic Andreev billiards does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Effective Random Matrix Theory description of chaotic Andreev billiards, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Effective Random Matrix Theory description of chaotic Andreev billiards will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-230185

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.