Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2010-06-14
Phys. Rev. E 82, 036702 (2010)
Physics
Condensed Matter
Statistical Mechanics
16 pages, 10 figures
Scientific paper
10.1103/PhysRevE.82.036702
We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of 1D quantum systems, to simulate the time-evolution of non-equilibrium stochastic systems. We describe this method in detail; a system's probability distribution is represented by a matrix product state (MPS) of finite dimension and then its time-evolution is efficiently simulated by repeatedly updating and approximately re-factorizing this representation. We examine the use of MPS as an approximation method, looking at parallels between the interpretations of applying it to quantum state vectors and probability distributions. In the context of stochastic systems we consider two types of factorization for use in the TEBD algorithm: non-negative matrix factorization (NMF), which ensures that the approximate probability distribution is manifestly non-negative, and the singular value decomposition (SVD). Comparing these factorizations we find the accuracy of the SVD to be substantially greater than current NMF algorithms. We then apply TEBD to simulate the totally asymmetric simple exclusion process (TASEP) for systems of up to hundreds of lattice sites in size. Using exact analytic results for the TASEP steady state, we find that TEBD reproduces this state such that the error in calculating expectation values can be made negligible, even when severely compressing the description of the system by restricting the dimension of the MPS to be very small. Out of the steady state we show for specific observables that expectation values converge as the dimension of the MPS is increased to a moderate size.
Clark Stephen R.
Jaksch Dieter
Johnson Thomas H.
No associations
LandOfFree
Dynamical simulations of classical stochastic systems using matrix product states does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamical simulations of classical stochastic systems using matrix product states, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamical simulations of classical stochastic systems using matrix product states will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-421977