Physics – Chemical Physics
Scientific paper
2010-03-22
J. Phys. Chem. C, 2009, 113 (50), pp 21097-21105
Physics
Chemical Physics
Scientific paper
10.1021/jp905689t
The dissociative adsorption of methane on variously oxidized Pd, Pt and Pd-Pt surfaces is investigated using density-functional theory, as a step towards understanding the combustion of methane on these materials. For Pd-Pt alloys, models of surface oxide structures are built on the basis of known oxides on Pd and Pt. The methane adsorption energy presents large variations depending on the oxide structure and composition. Adsorption is endothermic on the bare Pd(111) metal surface as well as on stable thin layer oxide structures such as the ($\sqrt{5}\times\sqrt{5}$) surface oxide on Pd(100) and the PtO$_2$-like oxide on Pt(111). Instead, large adsorption energies are obtained for the (100) surface of bulk PdO, for metastable mixed Pd$_{1-x}$Pt$_x$O$_{4/3}$ oxide layers on Pt(100), and for Pd-Pt(111) surfaces covered with one oxygen monolayer. In the latter case, we find a net thermodynamic preference for a direct conversion of methane to methanol, which remains adsorbed on the oxidized metal substrates via weak hydrogen-bond interactions.
Bobeth Manfred
Ciacchi Lucio Colombi
Cuniberti Gianaurelio
Dianat Arezoo
Pompe Wolfgang
No associations
LandOfFree
Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-206242