Direct Observation of Non-Monotonic dx2-y2-Wave Superconducting Gap in Electron-Doped High-Tc Superconductor Pr0.89LaCe0.11CuO4

Physics – Condensed Matter – Superconductivity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 4 figures

Scientific paper

10.1103/PhysRevLett.95.017003

We performed high-resolution angle-resolved photoemission spectroscopy on electron-doped high-Tc superconductor Pr0.89LaCe0.11CuO4 to study the anisotropy of the superconducting gap. The observed momentum dependence is basically consistent with the dx2-y2-wave symmetry, but obviously deviates from the monotonic dx2-y2 gap function. The maximum gap is observed not at the zone boundary, but at the hot spot where the antiferromagnetic spin fluctuation strongly couples to the electrons on the Fermi surface. The present experimental results unambiguously indicate the spin-mediated pairing mechanism in electron-doped high-Tc superconductors.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Direct Observation of Non-Monotonic dx2-y2-Wave Superconducting Gap in Electron-Doped High-Tc Superconductor Pr0.89LaCe0.11CuO4 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Direct Observation of Non-Monotonic dx2-y2-Wave Superconducting Gap in Electron-Doped High-Tc Superconductor Pr0.89LaCe0.11CuO4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Direct Observation of Non-Monotonic dx2-y2-Wave Superconducting Gap in Electron-Doped High-Tc Superconductor Pr0.89LaCe0.11CuO4 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-167867

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.