Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2003-07-20
Physics
Condensed Matter
Statistical Mechanics
5 pages, e figures, submitted to Phys. Rev. E
Scientific paper
10.1103/PhysRevE.69.011403
Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth $R_N^{-\gamma}$ (where $R_N$ is the radius of the $N-$ particle cluster). For $\gamma > 1$ the growth pattern is in the same universality class as diffusion limited aggregation (DLA) growth, while for $\gamma < 1$ the resulting patterns have a lower fractal dimension $D(\gamma)$ than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at $\gamma = 1/2$, significantly smaller than might be expected from the lower bound $\alpha_{min} \simeq 0.67$ of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for $D(\gamma)$ both close to the breakdown of DLA universality class, i.e., $\gamma \lesssim 1$, and close to the pinning transition, i.e., $\gamma \gtrsim 1/2$.
Family Fereydoon
Hentschel George H. E.
Popescu M. N.
No associations
LandOfFree
Diffusion Limited Aggregation with Power-Law Pinning does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Diffusion Limited Aggregation with Power-Law Pinning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diffusion Limited Aggregation with Power-Law Pinning will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-16993