Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2005-06-28
Org. Electron. 7 (2006) 276--286.
Physics
Condensed Matter
Soft Condensed Matter
accepted at Organic electronics
Scientific paper
10.1016/j.orgel.2006.03.005
The influence of substrate treatment with self-assembled monolayers and thermal annealing was analysed by electrical and structural measurements on field-effect transistors (FETs) and metal-insulator-semiconductor (MIS) diodes using poly(3-hexylthiophene) (P3HT) as a semiconducting polymer and Si/SiO2 wafers as a substrate. It is found that surface treatment using silanising agents like hexamethyldisilazane (HMDS) and octadecyltrichlorosi-lane (OTS) can increase the field-effect mobility by up to a factor of 50, reaching values in saturation of more than 4E-2 cm^2/Vs at room temperature. While there is a clear correlation between the obtained field-effect mobility and the contact angle of water on the treated substrates, X-ray diffraction and capacitance measurements on MIS diodes show that structural and electrical properties in the bulk of the P3HT films are not influenced by the surface treatment. On the other hand, thermal annealing is found to cause an increase of grain size, bulk relaxation frequency and thereby of the mobility perpendicular to the SiO2/P3HT interface, but has very little influence on the field-effect mobility. Temperature dependent investigations on MIS diodes and FETs show that the transport perpendicular to the substrate plane is thermally activated and can be described by hopping in a Gaussian density of states, whereas the field-effect mobility in the substrate plane is almost temperature independent over a wide range. This investigations reveal significant differ-ences between interface and bulk transport properties in polymer field-effect devices.
Bruetting W.
Grecu S.
Opitz Andrea
Roggenbuck M.
No associations
LandOfFree
Differences of interface and bulk transport properties in polymer field-effect devices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Differences of interface and bulk transport properties in polymer field-effect devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differences of interface and bulk transport properties in polymer field-effect devices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-434241