Physics – Condensed Matter – Materials Science
Scientific paper
2011-04-27
Phys. Rev B 83, 235108 (2011)
Physics
Condensed Matter
Materials Science
9 pages, 11 figures, 1 table, Accepted for publication in Physical Review B
Scientific paper
Using an ab-initio density functional theory based electronic structure method with a semi-local density approximation, we study thin-film electronic properties of two topological insulators based on ternary compounds of Tl (Thallium) and Bi (Bismuth). We consider TlBiX$_2$ (X=Se, Te) and Bi$_2$$X$_2$Y (X,Y= Se,Te) compounds which provide better Dirac cones, compared to the model binary compounds Bi$_2$X$_3$ (X=Se, Te). With this property in combination with a structurally perfect bulk crystal, the latter ternary compound has been found to have improved surface electronic transport in recent experiments. In this article, we discuss the nature of surface states, their locations in the Brillouin zone and their interactions within the bulk region. Our calculations suggest a critical thin film thickness to maintain the Dirac cone which is significantly smaller than that in binary Bi-based compounds. Atomic relaxations or rearrangements are found to affect the Dirac cone in some of these compounds. And with the help of layer-projected surface charge densities, we discuss the penetration depth of the surface states into the bulk region. The electronic spectrum of these ternary compounds agrees very well with the available experimental results.
Banerjee Sanjay K.
Chang Jiwon
Register Leonard F.
Sahu Bhagawan
No associations
LandOfFree
Density Functional Study of Ternary Topological Insulator Thin Films does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Density Functional Study of Ternary Topological Insulator Thin Films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Density Functional Study of Ternary Topological Insulator Thin Films will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-476270