Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2011-07-27
Physics
Condensed Matter
Statistical Mechanics
Scientific paper
Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well the structure of the local hydrogen bond network in bulk water while ignoring effects of the remaining long ranged interactions. This deconstruction can provide insight into the different roles that the local hydrogen bond network, dispersion forces, and long ranged dipolar interactions play in determining a variety of properties of SPC/E and related classical models of water. Here we focus on the anomalous behavior of the internal pressure and the temperature dependence of the density of bulk water. We further utilize these short ranged models along with local molecular field theory to quantify the influence of these interactions on the structure of hydrophobic interfaces and the crossover from small to large scale hydration behavior. The implications of our findings for theories of hydrophobicity and possible refinements of classical water models are also discussed.
Remsing Richard C.
Rodgers Jocelyn M.
Weeks John D.
No associations
LandOfFree
Deconstructing classical water models at interfaces and in bulk does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Deconstructing classical water models at interfaces and in bulk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deconstructing classical water models at interfaces and in bulk will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-413211