Correlation of high temperature X-ray photoemission spectral features and conductivity of epitaxially strained (La0.8Sr0.2)0.95Ni0.2Fe0.8O3/SrTiO3(110)

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1063/1.3174916

Reversible and irreversible discontinuities at around 573 K and 823 K in the electric conductivity of a strained 175 nm thin film of (La0.8Sr0.2)0.95Ni0.2Fe0.8O3-{\delta} grown by pulsed laser deposition on SrTiO3 (110) are reflected by valence band changes as monitored in photoemission and oxygen K-edge x-ray absorption spectra. The irreversible jump at 823 K is attributed to depletion of doped electron holes and reduction of Fe4+ to Fe3+, as evidenced by oxygen and iron core level soft x-ray spectroscopy, and possibly of a chemical origin, whereas the reversible jump at 573 K possibly originates from structural changes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Correlation of high temperature X-ray photoemission spectral features and conductivity of epitaxially strained (La0.8Sr0.2)0.95Ni0.2Fe0.8O3/SrTiO3(110) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Correlation of high temperature X-ray photoemission spectral features and conductivity of epitaxially strained (La0.8Sr0.2)0.95Ni0.2Fe0.8O3/SrTiO3(110), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Correlation of high temperature X-ray photoemission spectral features and conductivity of epitaxially strained (La0.8Sr0.2)0.95Ni0.2Fe0.8O3/SrTiO3(110) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-389566

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.