Controlling the micellar morphology of binary PEO-PCL block copolymers in water-THF through controlled blending

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

31 pages including 14 figures (double-spaced)

Scientific paper

We study both experimentally and theoretically the self-assembly of binary block copolymers in dilute solution, where self-assembly is triggered by changing the solvent from the common good solvent THF to the selective solvent water, and where the two species on their own in water form vesicles and spherical micelles respectively. We find that in water the inter-micellar exchange of these block copolymers is very slow so that the self-assembled structures are in local but not global equilibrium (i.e., they are non-ergodic). This opens up the possibility of controlling micelle morphology both thermodynamically and kinetically. Specifically, when the two species are first dissolved in THF before mixing and self-assembly (`premixing') by dilution with water, the morphology is found to depend on the mixing ratio of the two species, going gradually from vesicles via `bulbed' rods, rings, Y-junctions and finally to spherical micelles as we increase the proportion of the sphere-formers. On the other hand, if the two species are first partially self-assembled (by partial exchange of the solvent with water) before mixing and further self-assembly (`intermediate mixing'), novel metastable structures, including nanoscopic pouches, emerge. These experimental results are corroborated by self-consistent field theory calculations (SCFT) which reproduce the sequence of morphologies seen in the pre-mixing experiments. SCFT also reveals a clear coupling between polymer composition and aggregate curvature, with regions of positive and negative curvature being stabilized by an enrichment and depletion of sphere formers respectively. Our study demonstrates that both thermodynamic and kinetic blending of block copolymers are effective design parameters to control the resulting structures and allow us to access a much richer range of nano-morphologies than is possible with monomodal block copolymer solutions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Controlling the micellar morphology of binary PEO-PCL block copolymers in water-THF through controlled blending does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Controlling the micellar morphology of binary PEO-PCL block copolymers in water-THF through controlled blending, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlling the micellar morphology of binary PEO-PCL block copolymers in water-THF through controlled blending will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-638705

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.