Physics – Condensed Matter – Superconductivity
Scientific paper
2008-11-23
Physics
Condensed Matter
Superconductivity
Submitted to Europhysics Letters
Scientific paper
10.1209/0295-5075/85/17008
Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on "local" magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.
Bending S. J.
Clem John R.
Connolly M. R.
Milosevic Milorad V.
Tamegai Tsuyoshi
No associations
LandOfFree
Continuum versus discrete flux behaviour in large mesoscopic Bi(2)Sr(2)CaCu(2)O(8+delta) disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Continuum versus discrete flux behaviour in large mesoscopic Bi(2)Sr(2)CaCu(2)O(8+delta) disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuum versus discrete flux behaviour in large mesoscopic Bi(2)Sr(2)CaCu(2)O(8+delta) disks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-338548