Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 pages, 13 figures

Scientific paper

10.1021/ma7024072

Performing molecular dynamics simulations for all-atom models, we characterize the conformational and structural relaxations of poly(ethylene oxide) and poly(propylene oxide) melts. The temperature dependence of these relaxation processes deviates from an Arrhenius law for both polymers. We demonstrate that mode-coupling theory captures some aspects of the glassy slowdown, but it does not enable a complete explanation of the dynamical behavior. When the temperature is decreased, spatially heterogeneous and cooperative translational dynamics are found to become more important for the structural relaxation. Moreover, the transitions between the conformational states cease to obey Poisson statistics. In particular, we show that, at sufficiently low temperatures, correlated forward-backward motion is an important aspect of the conformational relaxation, leading to strongly nonexponential distributions for the waiting times of the dihedrals in the various conformational states

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-365121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.