Collision statistics in sheared inelastic hard spheres

Physics – Condensed Matter – Other Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 figures, 1 table, 27 pages

Scientific paper

The dynamics of sheared inelastic-hard-sphere systems are studied using non-equilibrium molecular dynamics simulations and direct simulation Monte Carlo. In the molecular dynamics simulations Lees-Edwards boundary conditions are used to impose the shear. The dimensions of the simulation box are chosen to ensure that the systems are homogeneous and that the shear is applied uniformly. Various system properties are monitored, including the one-particle velocity distribution, granular temperature, stress tensor, collision rates, and time between collisions. The one-particle velocity distribution is found to agree reasonably well with an anisotropic Gaussian distribution, with only a slight overpopulation of the high velocity tails. The velocity distribution is strongly anisotropic, especially at lower densities and lower values of the coefficient of restitution, with the largest variance in the direction of shear. The density dependence of the compressibility factor of the sheared inelastic hard sphere system is quite similar to that of elastic hard sphere fluids. As the systems become more inelastic, the glancing collisions begin to dominate more direct, head-on collisions. Examination of the distribution of the time between collisions indicates that the collisions experienced by the particles are strongly correlated in the highly inelastic systems. A comparison of the simulation data is made with DSMC simulation of the Enskog equation. Results of the kinetic model of Montanero et al. {[}Montanero et al., J. Fluid Mech. 389, 391 (1999){]} based on the Enskog equation are also included. In general, good agreement is found for high density, weakly inelastic systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Collision statistics in sheared inelastic hard spheres does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Collision statistics in sheared inelastic hard spheres, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collision statistics in sheared inelastic hard spheres will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-347945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.