Collective oscillations of a confined Bose gas at finite temperature in the random-phase approximation

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 9 figures, submitted to Phys. Rev. A

Scientific paper

10.1103/PhysRevA.69.043605

We present a theory for the linear dynamics of a weakly interacting Bose gas confined inside a harmonic trap at finite temperature. The theory treats the motions of the condensate and of the non-condensate on an equal footing within a generalized random-phase approximation, which ({\it i}) extends the second-order Beliaev-Popov approach by allowing for the dynamical coupling between fluctuations in the thermal cloud, and ({\it ii}) reduces to an earlier random-phase scheme when the anomalous density fluctuations are omitted. Numerical calculations of the low-lying spectra in the case of isotropic confinement show that the present theory obeys with high accuracy the generalized Kohn theorem for the dipolar excitations and demonstrate that combined normal and anomalous density fluctuations play an important role in the monopolar excitations of the condensate. Mean-field theory is instead found to yield accurate results for the quadrupolar modes of the condensate. Although the restriction to spherical confinement prevents quantitative comparisons with measured spectra, it appears that the non-mean field effects that we examine may be relevant to explain the features exhibited by the breathing mode as a function of temperature in the experiments carried out at JILA on a gas of $^{87}$Rb atoms.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Collective oscillations of a confined Bose gas at finite temperature in the random-phase approximation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Collective oscillations of a confined Bose gas at finite temperature in the random-phase approximation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collective oscillations of a confined Bose gas at finite temperature in the random-phase approximation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-339820

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.