Coherent stochastic resonance in one dimensional diffusion with one reflecting and one absorbing boundaries

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

one .tex file and 12 .eps files

Scientific paper

It is shown that the single-step periodic signal (periodic telegraph signal) can not produce coherent stochastic resonance for diffusion on a segment with one absorbing and one reflecting end points while the multi-step periodic signal does. The general features of this process are exihibited. The resonant frequency is found to decrease and the mean first passage time at resonant frequency increases linearly, as we increase the length of the medium. The cycle variable is shown to be the proper argument to express the first passage time density function at resonance. A formula for first passage time density function at resonance is derived in terms of two universal functions, which clearly isolates its dependence on the length of the medium.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Coherent stochastic resonance in one dimensional diffusion with one reflecting and one absorbing boundaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Coherent stochastic resonance in one dimensional diffusion with one reflecting and one absorbing boundaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coherent stochastic resonance in one dimensional diffusion with one reflecting and one absorbing boundaries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-446945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.