Physics – Condensed Matter – Materials Science
Scientific paper
2011-10-18
Physics
Condensed Matter
Materials Science
Scientific paper
10.1021/nn204177u
A theoretical investigation of the effects of elastic coherency on the thermodynamics, kinetics, and morphology of intercalation in single LiFePO4 nanoparticles yields new insights into this important battery material. Anisotropic elastic stiffness and misfit strains lead to the unexpected prediction that low-energy phase boundaries occur along {101} planes, while conflicting reports of phase boundary orientations are resolved by a partial loss of coherency in the {100} direction. Elastic relaxation near surfaces leads to the formation of a striped morphology, whose characteristic length scale is predicted by the model and yields an estimate of the interfacial energy. The effects of coherency strain on solubility and galvanostatic discharge are studied with a reaction-limited phase-field model, which quantitatively captures the influence of misfit strain, particle size, and temperature on solubility seen in experiments. Coherency strain strongly suppresses phase separation during discharge, which enhances rate capability and extends cycle life. The effects of elevated temperature and the feasibility of nucleation are considered in the context of multi-particle cathodes.
Bazant Martin Z.
Cogswell Daniel A.
No associations
LandOfFree
Coherency strain and the kinetics of phase separation in LiFePO4 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Coherency strain and the kinetics of phase separation in LiFePO4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coherency strain and the kinetics of phase separation in LiFePO4 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-290066