Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

submitted to JCP

Scientific paper

10.1063/1.2795699

We use discontinuous molecular dynamics and grand-canonical transition-matrix Monte Carlo simulations to explore how confinement between parallel hard walls modifies the relationships between packing fraction, self-diffusivity, partial molar excess entropy, and total excess entropy for binary hard-sphere mixtures. To accomplish this, we introduce an efficient algorithm to calculate partial molar excess entropies from the transition-matrix Monte Carlo simulation data. We find that the species-dependent self-diffusivities of confined fluids are very similar to those of the bulk mixture if compared at the same, appropriately defined, packing fraction up to intermediate values, but then deviate negatively from the bulk behavior at higher packing fractions. On the other hand, the relationships between self-diffusivity and partial molar excess entropy (or total excess entropy) observed in the bulk fluid are preserved under confinement even at relatively high packing fractions and for different mixture compositions. This suggests that the partial molar excess entropy, calculable from classical density functional theories of inhomogeneous fluids, can be used to predict some of the nontrivial dynamical behaviors of fluid mixtures in confined environments.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-380246

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.