Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2000-01-20
J. Phys. A: Math. Gen. 33, L305 (2000).
Physics
Condensed Matter
Statistical Mechanics
RevTex, 4 pages
Scientific paper
10.1088/0305-4470/33/33/101
We consider the ordering kinetics of a nonconserved scalar field advected by a uniform shear flow. Using the Ohta-Jasnow-Kawasaki approximation, modified to allow for shear-induced anisotropy, we calculate the asymptotic time dependence of the characteristic length scales, L_parallel and L_perp, that describe the growth of order parallel and perpendicular to the mean domain orientation. In space dimension d=3 we find, up to constants, L_parallel = gamma t^{3/2}, L_perp = t^{1/2}, where gamma is the shear rate, while for d = 2 we find L_parallel = gamma^{1/2} t (ln t)^{1/4}, L_perp = gamma^{-1/2}(ln t)^{-1/4} . Our predictions for d=2 can be tested by experiments on twisted nematic liquid crystals.
Bray Alan J.
Cavagna Andrea
No associations
LandOfFree
Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-625259