Physics – Condensed Matter
Scientific paper
1998-06-13
Physics
Condensed Matter
16 pages, two-column RevTex, 13 ps figs embedded, subm. to PRE
Scientific paper
10.1103/PhysRevE.59.5468
We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes of the type A+B --> 2B and A+B --> 2C are considered in the limit of weak diffusion. As an illustrative advection dynamics we consider a model of the von K\'arm\'an vortex street, a time periodic two-dimensional flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the process, and the products cover fattened-up copies of this manifold. This may account for the observed filamental intensification of activity in environmental flows. The reaction equations valid in the wake are derived either in the form of dissipative maps or differential equations depending on the regime under consideration. They contain terms that are not present in the traditional reaction equations of the same active process: the decay of the products is slower while the productivity is much faster than in homogeneous flows. Both effects appear as a consequence of underlying fractal structures. In the long time limit, the system locks itself in a dynamic equilibrium state synchronized to the flow for both types of reactions. For particles of finite size an emptying transition might also occur leading to no products left in the wake.
Grebogi Celso
Karolyi Gy.
Pentek A.
Tel Tamas
Toroczkai Zoltan
No associations
LandOfFree
Chemical or Biological Activity in Open Chaotic Flows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chemical or Biological Activity in Open Chaotic Flows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical or Biological Activity in Open Chaotic Flows will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-434757