Characterization of phase transition in Heisenberg mixtures from density functional theory

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 5 figures

Scientific paper

The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $\Omega$ with respect to the total density, concentration, and the magnetization fluctuations has been investigated and diagonalized. The zero of the smallest eigenvalue $\lambda_s$ signalizes the phase instability and the related eigenvector $\textbf{x}_s$ characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a mixed spinodal where the order parameter is a mixture of total density, concentration, and magnetization. Although in the fixed total number density or temperature sections the obtained spinodal diagrams are quite similar topology, the predominant phase instabilities are considerable different by analyzing $\textbf{x}_s$ in density-concentration-magnetization fluctuations space. Furthermore the spinodal diagrams in the different fixed concentration are topologically different.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Characterization of phase transition in Heisenberg mixtures from density functional theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Characterization of phase transition in Heisenberg mixtures from density functional theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Characterization of phase transition in Heisenberg mixtures from density functional theory will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-265206

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.