Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2001-08-09
Physics
Condensed Matter
Statistical Mechanics
10 pages, 3 eps figures
Scientific paper
10.1088/0305-4470/34/37/102
We consider the class of long-range Hamiltonian systems first introduced by Anteneodo and Tsallis and called the alpha-XY model. This involves N classical rotators on a d-dimensional periodic lattice interacting all to all with an attractive coupling whose strength decays as r^{-alpha}, r being the distances between sites. Using a recent geometrical approach, we estimate for any d-dimensional lattice the scaling of the largest Lyapunov exponent (LLE) with N as a function of alpha in the large energy regime where rotators behave almost freely. We find that the LLE vanishes as N^{-kappa}, with kappa=1/3 for alpha/d between 0 and 1/2 and kappa=2/3(1-alpha/d) for alpha/d between 1/2 and 1. These analytical results present a nice agreement with numerical results obtained by Campa et al., including deviations at small N.
Firpo Marie-Christine
Ruffo Stefano
No associations
LandOfFree
Chaos suppression in the large size limit for long-range systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chaos suppression in the large size limit for long-range systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chaos suppression in the large size limit for long-range systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-613081