Breakdown of universality in multi-cut matrix models

Physics – Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

35 pages, Latex (1 file) + 3 figures (3 .eps files), revised to take into account a few references

Scientific paper

10.1088/0305-4470/33/38/307

We solve the puzzle of the disagreement between orthogonal polynomials methods and mean field calculations for random NxN matrices with a disconnected eigenvalue support. We show that the difference does not stem from a Z2 symmetry breaking, but from the discreteness of the number of eigenvalues. This leads to additional terms (quasiperiodic in N) which must be added to the naive mean field expressions. Our result invalidates the existence of a smooth topological large N expansion and some postulated universality properties of correlators. We derive the large N expansion of the free energy for the general 2-cut case. From it we rederive by a direct and easy mean-field-like method the 2-point correlators and the asymptotic orthogonal polynomials. We extend our results to any number of cuts and to non-real potentials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Breakdown of universality in multi-cut matrix models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Breakdown of universality in multi-cut matrix models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breakdown of universality in multi-cut matrix models will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-392353

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.