Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2001-06-18
J. Low Temp. Phys. vol. 151, p1149-1163 (2008)
Physics
Condensed Matter
Strongly Correlated Electrons
19 pages, 10 figures, accepted for publication in Journal of Low Temperature Physics
Scientific paper
10.1007/s10909-008-9800-z
We investigate the applicability of Migdal--Eliashberg (ME) theory by revisiting Migdal's analysis within the dynamical mean-field theory framework. First, we compute spectral functions, the quasi-particle weight, the self energy, renormalised phonon frequency and resistivity curves of the half-filled Holstein model. We demonstrate how ME theory has a phase-transition-like instability at intermediate coupling, and how the Engelsberg--Schrieffer (ES) picture is complicated by low-energy excitations from higher order diagrams (demonstrating that ES theory is a very weak coupling approach). Through consideration of the lowest-order vertex correction, we analyse the applicability of ME theory close to this transition. We find a breakdown of the theory in the intermediate coupling adiabatic limit due to a divergence in the vertex function. The region of applicability is mapped out, and it is found that ME theory is only reliable in the weak coupling adiabatic limit, raising questions about the accuracy of recent analyses of cuprate superconductors which do not include vertex corrections.
d'Ambrumenil Nick
Hague J. P.
No associations
LandOfFree
Breakdown of Migdal--Eliashberg theory via catastrophic vertex divergence at low phonon frequency does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Breakdown of Migdal--Eliashberg theory via catastrophic vertex divergence at low phonon frequency, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Breakdown of Migdal--Eliashberg theory via catastrophic vertex divergence at low phonon frequency will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-239944