Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2010-06-15
Martin Leib and Michael J Hartmann 2010 New J. Phys. 12 093031
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
Scientific paper
10.1088/1367-2630/12/9/093031
We investigate a chain of superconducting stripline resonators, each interacting with a transmon qubit, that are capacitively coupled in a row. We show that the dynamics of this system can be described by a Bose-Hubbard Hamiltonian with attractive interactions for polaritons, superpositions of photons and qubit excitations. This setup we envisage constitutes one of the first platforms where all technological components that are needed to experimentally study chains of strongly interacting polaritons have already been realized. By driving the first stripline resonator with a microwave source and detecting the output field of the last stripline resonator one can spectroscopically probe properties of the system in the driven dissipative regime. We calculate the stationary polariton density and density-density correlations $g^{(2)}$ for the last cavity which can be measured via the output field. Our results display a transition from a coherent to a quantum field as the ratio of on site interactions to driving strength is increased.
Hartmann Michael J.
Leib Martin
No associations
LandOfFree
Bose-Hubbard dynamics of polaritons in a chain of circuit QED cavities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bose-Hubbard dynamics of polaritons in a chain of circuit QED cavities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bose-Hubbard dynamics of polaritons in a chain of circuit QED cavities will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-104681