Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

Physics – Condensed Matter – Quantum Gases

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-16837

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.