Physics – Condensed Matter – Quantum Gases
Scientific paper
2009-12-29
Physics
Condensed Matter
Quantum Gases
20 pages
Scientific paper
A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function psi(x,y) is a Gaussian exp(-r^2/2), multiplied by an analytic function f(z) of the complex variable z= x+ i y. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here, a similar description applies to a rapidly rotating non-symmetric two-dimensional trap with arbitrary quadratic anisotropy (omega_x^2 < omega_y^2). The corresponding condensate wave function psi(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z = x + i \beta_- y is a stretched complex variable and 0< \beta_- <1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L_z, which suggests that a non-symmetric trap should make it easier to observe this transition or (2) in terms of a "fragmented" correlated state, which suggests that a non-symmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).
No associations
LandOfFree
Bose-Einstein condensate in a rapidly rotating non-symmetric trap does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bose-Einstein condensate in a rapidly rotating non-symmetric trap, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bose-Einstein condensate in a rapidly rotating non-symmetric trap will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-63370