BCS-BEC crossover in spin-orbit coupled two-dimensional Fermi gases

Physics – Condensed Matter – Quantum Gases

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1103/PhysRevA.85.013601

The recent experimental realization of spin-orbit coupling for ultra-cold atoms has generated much interest in the physics of spin-orbit coupled degenerate Fermi gases. Although recently the BCS-BEC crossover in three-dimensional (3D) spin-orbit coupled Fermi gases has been intensively studied, the corresponding two-dimensional (2D) crossover physics has remained unexplored. In this paper, we investigate, both numerically and analytically, the BCS-BEC crossover physics in 2D degenerate Fermi gases in the presence of a Rashba type of spin-orbit coupling. We derive the mean field gap and atom number equations suitable for the 2D spin-orbit coupled Fermi gases and solve them numerically and self-consistently, from which the dependence of the ground state properties (chemical potential, superfluid pairing gap, ground state energy per atom) on the system parameters (e.g., binding energy, spin-orbit coupling strength) is obtained. Furthermore, we derive analytic expressions for these ground state quantities, which agree well with our numerical results within a broad parameter region. Such analytic expressions also agree qualitatively with previous numerical results for the 3D spin-orbit coupled Fermi gases, where analytic results are lacked. We show that with an increasing SOC strength, the chemical potential is shifted by a constant determined by the SOC strength. The superfluid pairing gap is enhanced significantly in the BCS limit for strong SOC, but only increases slightly in the BEC limit.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

BCS-BEC crossover in spin-orbit coupled two-dimensional Fermi gases does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with BCS-BEC crossover in spin-orbit coupled two-dimensional Fermi gases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and BCS-BEC crossover in spin-orbit coupled two-dimensional Fermi gases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-166392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.