Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5$d$ Transition Metal Oxides Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $\infty$)

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1103/PhysRevLett.101.226402

We investigated the electronic structures of the 5$d$ Ruddlesden-Popper series Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $\infty$) using optical spectroscopy and first-principles calculations. As 5$d$ orbitals are spatially more extended than 3$d$ or 4$d$ orbitals, it has been widely accepted that correlation effects are minimal in 5$d$ compounds. However, we observed a bandwidth-controlled transition from a Mott insulator to a metal as we increased $n$. In addition, the artificially synthesized perovskite SrIrO$_{3}$ showed a very large mass enhancement of about 6, indicating that it was in a correlated metallic state.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5$d$ Transition Metal Oxides Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $\infty$) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5$d$ Transition Metal Oxides Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $\infty$), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5$d$ Transition Metal Oxides Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $\infty$) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-443203

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.