Physics – Condensed Matter – Materials Science
Scientific paper
2007-12-30
Physics
Condensed Matter
Materials Science
35 pages, 7 figures, submitted to IEEE TED
Scientific paper
10.1109/TED.2008.920233
Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semi-empirical atomistic tight-binding model coupled to a self consistent Poisson solver is used for the dispersion calculation. A semi-classical, ballistic FET model is used to evaluate the current-voltage characteristics. It is found that the total gate capacitance is degraded from the oxide capacitance value by 30% for wires in all the considered transport orientations ([100], [110], [111]). Different wire directions primarily influence the carrier velocities, which mainly determine the relative performance differences, while the total charge difference is weakly affected. The velocities depend on the effective mass and degeneracy of the dispersions. The [110] and secondly the [100] oriented 3nm thick nanowires examined, indicate the best ON-current performance compared to [111] wires. The dispersion features are strong functions of quantization. Effects such as valley splitting can lift the degeneracies especially for wires with cross section sides below 3nm. The effective masses also change significantly with quantization, and change differently for different transport orientations. For the cases of [100] and [111] wires the masses increase with quantization, however, in the [110] case, the mass decreases. The mass variations can be explained from the non-parabolicities and anisotropies that reside in the first Brillouin zone of silicon.
Klimeck Gerhard
Lundstrom Mark
Neophytou Neophytos
Paul Abhijeet
No associations
LandOfFree
Bandstructure Effects in Silicon Nanowire Electron Transport does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bandstructure Effects in Silicon Nanowire Electron Transport, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bandstructure Effects in Silicon Nanowire Electron Transport will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-713897