Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2006-08-16
P.R.B 70, 155312 (2004)
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
Scientific paper
Two-dimensional (2D) periodic electric modulations of a 2D electron gas split each Landau level into the well-known butterfly-type spectrum described by a Harper-type equation multiplied by an envelope function. This equation is slightly modified for 2D magnetic modulations but the spectrum remains qualitatively the same. The same holds if both types of modulations are present. The modulation strengths do not affect the structure of the butterfly-type spectrum, they only change its scale or its envelope. The latter is described by the ratio $\alpha$ of the flux quantum $h/e$ to the flux per unit cell. Exact numerical and approximate analytical results are presented for the energy spectrum as a function of the magnetic field. For integer $\alpha$ the internal structure collapses into a band for all cases. The bandwidth at the Fermi energy depends on the modulation strength, the electron density, and, when both modulations are present, on the phase difference between them. In the latter case if the modulations have a $\pi/2$ phase difference, the bandwidth at the Fermi energy is nearly independent of the magnetic field and the commensurability oscillations of the diffusive contribution to the resistivity disappear.
Peeters François M.
Vasilopoulos P.
Wang Xiang-Feng
No associations
LandOfFree
Band structure of a two-dimensional (2D) electron gas in the presence of 2D electric and magnetic modulations and of a perpendicular magnetic field does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Band structure of a two-dimensional (2D) electron gas in the presence of 2D electric and magnetic modulations and of a perpendicular magnetic field, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Band structure of a two-dimensional (2D) electron gas in the presence of 2D electric and magnetic modulations and of a perpendicular magnetic field will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-388396