Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2006-08-11
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
2 two-column pages, 3 figures
Scientific paper
We theoretically study the magnetoresistance of single wall carbon nanotubes (SWCNTs) in the ballistic transport regime, using a standard tight-binding approach. The main attention is directed to spin-polarized electrical transport in the presence of either axial or perpendicular magnetic field. The method takes into account both Zeeman splitting as well as size and chirality effects. These factors (along with a broadening of energy levels due to a strong nanotube/electrode coupling) lead, in ultra small SWCNTs, to serious modifications in profile of the Aharonov-Bohm oscillations. Other noteworthy findings are that in the parallel configuration (axial magnetic field) the ballistic magnetoconductance is negative (positive) for armchair (semiconducting zigzag) nanotubes, whereas in the perpendicular configuration the magnetoresistance is nearly zero both for armchair and zigzag SWCNTs.
Cuniberti Gianaurelio
Krompiewski S.
No associations
LandOfFree
Ballistic magnetoresistance in small-size carbon nanotubes devices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ballistic magnetoresistance in small-size carbon nanotubes devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ballistic magnetoresistance in small-size carbon nanotubes devices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-546572