Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages, 3 figures

Scientific paper

10.1103/PhysRevB.77.064302

Are systems that display Topological Quantum Order (TQO), and have a gap to excitations, hardware fault-tolerant at finite temperatures? We show that in surface code models that display low d-dimensional Gauge-Like Symmetries, such as Kitaev's and its generalizations, the expectation value of topological symmetry operators vanishes at any non-zero temperature, a phenomenon that we coined thermal fragility. The autocorrelation time for the non-local topological quantities in these systems may remain finite even in the thermodynamic limit. We provide explicit expressions for the autocorrelation functions in Kitaev's model. If temperatures far below the gap may be achieved then these autocorrelation times, albeit finite, can be made large. The physical engine behind the loss of correlations at large spatial and/or temporal distance is the proliferation of topological defects at any finite temperature as a result of a dimensional reduction. This raises an important question: How may we best quantify the degree of protection of quantum information in a topologically ordered system at finite temperature?

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-456075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.