Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2001-07-27
Physica A, vol. 302, pp. 279-289 (2001)
Physics
Condensed Matter
Statistical Mechanics
13 pages, 6 figures; contribution to the proceedings of the Minerva International Workshop on Frontiers In The Physics Of Comp
Scientific paper
10.1016/S0378-4371(01)00471-X
Within the framework of a simple Rouse-type model we present exact analytical results for dynamical critical behaviour on the sol side of the gelation transition. The stress-relaxation function is shown to exhibit a stretched-exponential long-time decay. The divergence of the static shear viscosity is governed by the critical exponent $k=\phi -\beta$, where $\phi$ is the (first) crossover exponent of random resistor networks, and $\beta$ is the critical exponent for the gel fraction. We also derive new results on the behaviour of normal stress coefficients.
Broderix Kurt
Löwe Henning
Müller Peter
Zippelius Annette
No associations
LandOfFree
Anomalous stress relaxation in random macromolecular networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Anomalous stress relaxation in random macromolecular networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anomalous stress relaxation in random macromolecular networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-674697