Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2011-12-21
Physics
Condensed Matter
Strongly Correlated Electrons
Scientific paper
Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena such as insulator-metal transitions, magnetism, magnetoresistance, and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites. Since the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.
Cano Andres
Delaney Kris
Fiebig Manfred
Kumagai Yutaro
Meier Dennis
No associations
LandOfFree
Anisotropic conductance at improper ferroelectric domain walls does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Anisotropic conductance at improper ferroelectric domain walls, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anisotropic conductance at improper ferroelectric domain walls will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-305687