Physics – Fluid Dynamics
Scientific paper
2011-02-18
J. Fluid Mech (2011) vol. 666, pp. 428-444
Physics
Fluid Dynamics
Scientific paper
10.1017/S0022112010004234
The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary artery flow assessment, is investigated in both steady and pulsatile tube flow. The sensor is composed of a heating element operated at constant power, and two thermopiles that measure flow-induced temperature differences over the sensor surface. An analytical sensor model is developed, which includes axial heat conduction in the fluid and a simple representation of the solid wall, assuming a quasi-steady sensor response to the pulsatile flow. To reduce the mathematical problem, described by a two-dimensional advection-diffusion equation, a spectral method is applied. A Fourier transform is then used to solve the resulting set of ordinary differential equations and an analytical expression for the fluid temperature is found. To validate the analytical model, experiments with the sensor mounted in a tube have been performed in steady and pulsatile water flow with various amplitudes and Strouhal numbers. Experimental results are generally in good agreement with theory and show a quasi-steady sensor response in the coronary flow regime. The model can therefore be used to optimize the sensor design for coronary flow assessment.
de Ven A. F. van A.
de Vosse N. van F.
Gelderblom Hanneke
Haartsen J. R.
Rutten M. C. M.
No associations
LandOfFree
Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-212661