Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2007-07-02
J. Chem. Phys. 127, 114512 (2007)
Physics
Condensed Matter
Statistical Mechanics
10 pages; 11 figs
Scientific paper
10.1063/1.2777136
We show that finite-range alternatives to the standard long-range BKS pair potential for silica might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance r_c such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for r_c ~ 10 Angstroms. For lower values of r_c, the long--range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method.
Berthier Ludovic
Carré Antoine
Horbach Juergen
Ispas Simona
Kob Walter
No associations
LandOfFree
Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-178921