Physics – Condensed Matter – Materials Science
Scientific paper
2000-06-26
Physics
Condensed Matter
Materials Science
9 pages, 5 figures, 4 tables
Scientific paper
10.1103/PhysRevB.62.14720
Model interaction potentials for real materials are generally optimized with respect to only those experimental properties that are easily evaluated as mechanical averages (e.g., elastic constants (at T=0 K), static lattice energies and liquid structure). For such potentials, agreement with experiment for the non-mechanical properties, such as the melting point, is not guaranteed and such values can deviate significantly from experiment. We present a method for re-parameterizing any model interaction potential of a real material to adjust its melting temperature to a value that is closer to its experimental melting temperature. This is done without significantly affecting the mechanical properties for which the potential was modeled. This method is an application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)]. As a test we apply the method to an embedded atom model of aluminum [J. Mei and J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental value of 933K. After re-parameterization, the melting temperature of the modified potential is found to be 931.5K +/- 1.5K.
Laird Brian B.
Sturgeon Jess B.
No associations
LandOfFree
Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-34278