Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2006-04-08
J. Phys. A: Math. Gen. 39 (2006) 9081-9092.
Physics
Condensed Matter
Statistical Mechanics
13 pages, 6 color figures
Scientific paper
10.1088/0305-4470/39/29/005
A veritable zoo of different knots is seen in the ensemble of looped polymer chains, whether created computationally or observed in vitro. At short loop lengths, the spectrum of knots is dominated by the trivial knot (unknot). The fractional abundance of this topological state in the ensemble of all conformations of the loop of $N$ segments follows a decaying exponential form, $ \sim \exp (-N/N_0)$, where $N_0$ marks the crossover from a mostly unknotted (ie topologically simple) to a mostly knotted (ie topologically complex) ensemble. In the present work we use computational simulation to look closer into the variation of $N_0$ for a variety of polymer models. Among models examined, $N_0$ is smallest (about 240) for the model with all segments of the same length, it is somewhat larger (305) for Gaussian distributed segments, and can be very large (up to many thousands) when the segment length distribution has a fat power law tail.
Grosberg Alexander Y.
Moore N. T.
No associations
LandOfFree
Abundance of unknots in various models of polymer loops does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Abundance of unknots in various models of polymer loops, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abundance of unknots in various models of polymer loops will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-590001