Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1103/PhysRevLett.107.107201

We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is allowed and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism in magnetic semiconductors electrically.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-678875

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.