Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
2001-03-13
Physics
Condensed Matter
Disordered Systems and Neural Networks
20 pages, 10 figures
Scientific paper
10.1103/PhysRevE.64.021912
In a recent study the initial rise of the mutual information between the firing rates of N neurons and a set of p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one another to each stimulus and that each conditional distribution of firing rates is gaussian. Yet real stimuli or behavioural correlates are high-dimensional, with both discrete and continuously varying features.Moreover, the gaussian approximation implies negative firing rates, which is biologically implausible. Here, we generalize the analysis to the case where the stimulus or behavioural correlate has both a discrete and a continuous dimension. In the case of large noise we evaluate the mutual information up to the quadratic approximation as a function of population size. Then we consider a more realistic distribution of firing rates, truncated at zero, and we prove that the resulting correction, with respect to the gaussian firing rates, can be expressed simply as a renormalization of the noise parameter. Finally, we demonstrate the effect of averaging the distribution across the discrete dimension, evaluating the mutual information only with respect to the continuously varying correlate.
Prete Valeria Del
Treves Alessandro
No associations
LandOfFree
A theoretical model of neuronal population coding of stimuli with both continuous and discrete dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A theoretical model of neuronal population coding of stimuli with both continuous and discrete dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A theoretical model of neuronal population coding of stimuli with both continuous and discrete dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-175244