A solvable model of fracture with power-law distribution of fragment sizes

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The present paper describes a stochastic model of fracture, whose fragment size distribution can be calculated analytically as a power-law-like distribution. The model is basically cascade fracture, but incorporates the effect that each fragment in each stage of cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A solvable model of fracture with power-law distribution of fragment sizes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A solvable model of fracture with power-law distribution of fragment sizes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A solvable model of fracture with power-law distribution of fragment sizes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-319935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.