A simplified derivation of the Linear Noise Approximation

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages, no figures

Scientific paper

Given a discrete stochastic process, for example a chemical reaction system or a birth and death process, we often want to find a continuous stochastic approximation so that the techniques of stochastic differential equations may be brought to bear. One powerful and useful way to do this is the system size expansion of van Kampen to express a trajectory as a small stochastic perturbation to a deterministic trajectory, using a small parameter related to the volume of the system in question. This is usually pursued only up to first order, called the Linear Noise Approximation. The usual derivation of this proceeds via the master equation of the discrete process and derives a Fokker-Planck equation for the stochastic perturbation, both of which are equations for the evolution of probability distributions. Here we present a derivation using stochastic difference equations for the discrete process and leading, via the chemical Langevin equation of Gillespie, directly to a stochastic differential equation for the stochastic perturbation. The new derivation, which does not yield the full system size expansion, draws more explicitly on the intuition of ordinary differential equations so may be more easily digestible for some audiences.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A simplified derivation of the Linear Noise Approximation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A simplified derivation of the Linear Noise Approximation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A simplified derivation of the Linear Noise Approximation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-387277

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.