Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
2007-05-23
Physics
Condensed Matter
Disordered Systems and Neural Networks
submitted to Neural Networks
Scientific paper
We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a trainingdphase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern-pair the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated in the output pads. The actual memory consists of spin distributions that is dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.
Korenivski Vlad
Palm R.
No associations
LandOfFree
A ferrofluid based neural network: design of an analogue associative memory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A ferrofluid based neural network: design of an analogue associative memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A ferrofluid based neural network: design of an analogue associative memory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-402150