$^1$H-NMR Study of the Random Bond Effect in the Quantum Spin System (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 2 figures, to be published in J. Phys. Soc. Jpn. vol.76 (2007) No.8

Scientific paper

10.1143/JPSJ.76.083701

Spin-lattice relaxation rate $T_1^{-1}$ of $^1$H-NMR has been measured in (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$ with $x=0.88$, which has been reported to be gapped system with singlet ground state from the previous macroscopic magnetization and specific heat measurements, in order to investigate the bond randomness effect microscopically in the gapped composite Haldane system (CH$_3$)$_2$CHNH$_3$CuCl$_3$. It was found that the spin-lattice relaxation rate $T_1^{-1}$ in the present system includes both fast and slow relaxation parts indicative of the gapless magnetic ground state and the gapped singlet ground state, respectively. We discuss the obtained results with the previous macroscopic magnetization and specific heat measurements together with the microscopic $\mu$SR experiments.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

$^1$H-NMR Study of the Random Bond Effect in the Quantum Spin System (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with $^1$H-NMR Study of the Random Bond Effect in the Quantum Spin System (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and $^1$H-NMR Study of the Random Bond Effect in the Quantum Spin System (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-356647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.