Efficient treatment of the high-frequency tail of the self-energy function and its relevance for multi-orbital models

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 6 figures, references updated, published version in Phys. Rev. B

Scientific paper

10.1103/PhysRevB.85.115103

In this paper, we present an efficient and stable method to determine the one-particle Green's function in the hybridization-expansion continuous-time (CT-HYB) quantum Monte Carlo method, within the framework of the dynamical mean-field theory. The high-frequency tail of the impurity self-energy is replaced with a noise-free function determined by a dual-expansion around the atomic limit. This method does not depend on the explicit form of the interaction term. More advantageous, it does not introduce any additional numerical cost to the CT-HYB simulation. We discuss the symmetries of the two-particle vertex, which can be used to optimize the simulation of the four-point correlation functions in the CT-HYB. Here, we adopt it to accelerate the dual-expansion calculation, which turns out to be especially suitable for the study of material systems with complicated band structures. As an application, a two-orbital Anderson impurity model with a general on-site interaction form is studied. The phase diagram is extracted as a function of the Coulomb interactions for two different Hund's coupling strengths. In the presence of the hybridization between different orbitals, for smaller interaction strengths, this model shows a transition from metal to band-insulator. Increasing the interaction strengths, this transition is replaced by a crossover from Mott insulator to band-insulator behavior.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Efficient treatment of the high-frequency tail of the self-energy function and its relevance for multi-orbital models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Efficient treatment of the high-frequency tail of the self-energy function and its relevance for multi-orbital models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Efficient treatment of the high-frequency tail of the self-energy function and its relevance for multi-orbital models will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-97033

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.