Theory of charge fluctuations and domain relocation times in semiconductor superlattices

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 2 figures

Scientific paper

10.1016/j.physd.2004.08.008

Shot noise affects differently the nonlinear electron transport in semiconductor superlattices depending on the strength of the coupling among the superlattice quantum wells. Strongly coupled superlattices can be described by a miniband Boltzmann-Langevin equation from which a stochastic drift-diffusion equation is derived by means of a consistent Chapman-Enskog method. Similarly, shot noise in weakly coupled, highly doped semiconductor superlattices is described by a stochastic discrete drift-diffusion model. The current-voltage characteristics of the corresponding deterministic model consist of a number of stable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If the initial state corresponds to a voltage on the middle of a stable branch and is suddenly switched to a final voltage corresponding to the next branch, the domains relocate after a certain delay time, called relocation time. The possible scalings of this mean relocation time are discussed using bifurcation theory and the classical results for escape of a Brownian particle from a potential well.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Theory of charge fluctuations and domain relocation times in semiconductor superlattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Theory of charge fluctuations and domain relocation times in semiconductor superlattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Theory of charge fluctuations and domain relocation times in semiconductor superlattices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-76678

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.