Phase diagram of the chromatic polynomial on a torus

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

72 pages (LaTeX2e). Includes tex file, three sty files, and 26 Postscript figures. Also included are Mathematica files transfe

Scientific paper

10.1016/j.nuclphysb.2007.04.023

We study the zero-temperature partition function of the Potts antiferromagnet (i.e., the chromatic polynomial) on a torus using a transfer-matrix approach. We consider square- and triangular-lattice strips with fixed width L, arbitrary length N, and fully periodic boundary conditions. On the mathematical side, we obtain exact expressions for the chromatic polynomial of widths L=5,6,7 for the square and triangular lattices. On the physical side, we obtain the exact ``phase diagrams'' for these strips of width L and infinite length, and from these results we extract useful information about the infinite-volume phase diagram of this model: in particular, the number and position of the different phases.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Phase diagram of the chromatic polynomial on a torus does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Phase diagram of the chromatic polynomial on a torus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase diagram of the chromatic polynomial on a torus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-692496

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.