Physics – Condensed Matter – Materials Science
Scientific paper
2010-06-12
Physics
Condensed Matter
Materials Science
8 pages, 4 figures, 1 table
Scientific paper
Sparse matter is characterized by regions with low electron density and its understanding calls for methods to accurately calculate both the van der Waals (vdW) interactions and other bonding. Here we present a first-principles density functional theory (DFT) study of a layered oxide (V2O5) bulk structure which shows charge voids in between the layers and we highlight the role of the vdW forces in building up material cohesion. The result of previous first-principles studies involving semilocal approximations to the exchange-correlation functional in DFT gave results in good agreement with experiments for the two in-plane lattice parameters of the unit cell but overestimated the parameter for the stacking direction. To recover the third parameter we include the nonlocal (dispersive) vdW interactions through the vdW-DF method [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] testing also various choices of exchange flavors. We find that the transferable first-principle vdW-DF calculations stabilizes the bulk structure. The vdW-DF method gives results in fairly good agreement with experiments for all three lattice parameters.
Londero Elisa
Schroder Elsebeth
No associations
LandOfFree
Role of van der Waals bonding in layered oxide: Bulk vanadium pentoxide does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Role of van der Waals bonding in layered oxide: Bulk vanadium pentoxide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Role of van der Waals bonding in layered oxide: Bulk vanadium pentoxide will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-625330