Evolution of the density of states at EF of Bi2-yPbySr2-xLaxCuO6+d and Bi2Sr2-xLaxCuO6+d cuprates with hole doping

Physics – Condensed Matter – Superconductivity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1103/PhysRevB.72.014504

Bi2Sr2-xLaxCuO6+d and Bi2-yPbySr2-xLaxCuO6+d high-Tc superconductors in a wide doping range from overdoped to heavily underdoped were studied by X-ray absorption and photo-emission spectroscopy. The hole concentration p was determined by an analysis of the Cu L3-absorption edge. Besides the occupied density of states derived from photoemission, the un-occupied density of states was determined from the prepeak of the O K-absorption edge. Both, the occupied as well as the unoccupied density of states reveal the same dependence on hole doping, i.e. a continuous increase with increasing doping in the hole underdoped region and a constant density in the hole overdoped region. By comparing these results of single-layer BSLCO with previous results on single-layer LSCO it could be argued that besides the localized holes on Cu sites the CuO2-planes consist of two types of doped holes, from which the so-called mobile holes determine the intensity of the prepeak of the O 1s absorption edge.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Evolution of the density of states at EF of Bi2-yPbySr2-xLaxCuO6+d and Bi2Sr2-xLaxCuO6+d cuprates with hole doping does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Evolution of the density of states at EF of Bi2-yPbySr2-xLaxCuO6+d and Bi2Sr2-xLaxCuO6+d cuprates with hole doping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Evolution of the density of states at EF of Bi2-yPbySr2-xLaxCuO6+d and Bi2Sr2-xLaxCuO6+d cuprates with hole doping will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-611174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.